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Abstract

The chemical mass balance (CMB) receptor model has apportioned volatile organic compounds (VOCs) in more than
20 urban areas, mostly in the United States. These applications differ in terms of the total fraction apportioned, the
calculation method, the chemical compounds used in the calculation, the apportionment units, and the source profiles
applied. Nevertheless, they show similar results for VOC fractions contributed by different sources. Gasoline vehicle
exhaust, liquid gasoline, and gasoline evaporation contribute up to 50% or more of the ambient VOCs in many of these
studies. Relative motor vehicle source contributions determined by CMB were similar to or larger than their proportions
in emissions inventories. Coatings and solvent contributions from CMB were much lower than the proportions
attributed to these sources in current emissions inventories. Several measurement and reporting conventions would
facilitate CMB analyses of VOC data sets. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Reactive organic gases (ROG) are essential to the
formation of excessive tropospheric ozone in urban areas
(Calvert, 1976; Seinfeld and Pandis, 1997). Organic rad-
icals produced by the oxidation of organic gases react
with nitrogen oxide to form nitrogen dioxide, thereby
shifting the photostationary equilibrium between ozone
and nitrogen oxide and allowing ozone to accumulate.
Though meteorological conditions and transport are
also important variables for ozone accumulation, only
nitrogen oxides (NO,) and ROG can be manipulated by
humans, and they are the primary focus of emissions
reduction programs. Most oxides of nitrogen are emitted
by combustion sources and can be continuously mea-
sured with good accuracy and precision at source and
receptor. ROG, on the other hand, consist of hundreds of
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separate compounds originating from many different
sources, both anthropogenic and natural. Measurement
methods are imperfect and cumbersome.

Although most ROG emissions studies have been re-
lated to ozone, the recent National Ambient Air Quality
Standards (NAAQS, U.S. EPA, 1997a) for PM, 5 (par-
ticles with aerodynamic diameters less than 2.5 um) en-
hance interest in the role played by different ROG in the
formation of secondary organic aerosol and nitric acid
(that turns into particle nitrate when combined with
ammonia). Secondary organic compounds in particulate
matter include aliphatic acids, alcohols, aromatic acids,
nitro-aromatics, carbonyls, esters, phenols, and aliphatic
nitrates (Bowman et al.,, 1995; Grosjean, 1992; Pandis
et al., 1992; Seinfeld and Pandis, 1997). The exact precur-
sors of these secondary organics are not well understood,
but they are generally assumed to be heavier hydrocar-
bons (i.e., molecules that contain more than seven or
eight carbon atoms).

Odum et al. (1997) identify aromatics as the major
group of commonly measured ROG that affect both
ozone and secondary aerosol formation. Meng et al.
(1997) demonstrate how changes in ROG emissions in
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Los Angeles that reduce ozone concentrations may inad-
vertently increase PM, 5 concentrations, and vice versa.
Many ROG compounds have also been identified as
toxic substances, and substantial effort has been placed in
characterizing their sources (e.g., Edgerton and Czuczwa,
1989; Harley and Cass, 1994). Volatile organic com-
pounds (VOCs) are found indoors as well as outdoors
(Lewis and Zweidinger, 1992). Though not important to
tropospheric pollution, halocarbons have been used as
refrigerants, degreasers, and fire suppressants, and par-
ticipate in the reduction of stratospheric ozone. Halocar-
bons have also been used in receptor models to determine
contributions to other pollutants from distant sources
(Bastable et al., 1990).

This review examines how the chemical mass balance
(CMB) receptor model has been applied to quantify am-
bient VOC source contributions to ambient concentra-
tions of organic gases, especially those that have been
identified as ozone precursors. It explains how CMB
source contribution estimates are used to evaluate and
improve ROG emissions inventories for ozone models.
In the process of this review, several deficiencies and
inconsistencies in source composition data bases, source
and receptor measurement strategies, and data reporting
conventions are identified. Recommendations for stand-
ardized approaches are given. It is proposed that the
CMB could also be used to evaluate the output of
complex, source-oriented air quality models, and that
model outputs should be adapted to accommodate this
application.

2. Definitions

Several terms are used inconsistently but interchange-
ably to describe different fractions of atmospheric or-
ganic material. Common definitions and units must be
used for ambient concentrations, source profiles, and
emissions rates. The following terms reflect current
usage, which is frequently ambiguous:

® Reactive organic gases (ROG): Organic gases with po-
tential to react (<30 day half-life) with the hydroxyl
radical and other chemicals, resulting in ozone and
secondary organic aerosol. The most reactive chem-
icals are not necessarily the largest contributors to
undesirable end products, however, as this depends on
the magnitude of their emissions as well as on their
reactivity (Carter and Lurmann, 1991).

o Total organic gases (TOG): Organic gases with and
without high hydroxyl reactivity. TOG typically in-
cludes ROG plus methane and halocarbons.

® PAMS target hydrocarbons: Fifty-five target hydrocar-
bons and non-methane organic compounds (NMOC)
measured at photochemical assessment monitoring
stations (PAMS). NMOC is operationally defined as
the sum of hydrocarbons up to n-undecane.

® Non-methane hydrocarbons (NMHC, also termed “light”
hydrocarbons): C,-C, (light) hydrocarbons collected
in stainless-steel canisters and measured by gas
chromatography with flame ionization detection
(GC-FID) by EPA method TO-14 (U.S. EPA, 1997b).
NMHC excludes carbonyl compounds, halocarbons,
carbon dioxide, and carbon monoxide even though
some of these may be quantified by the same method.
NMHC is most often used to quantify ozone precur-
sors.

® Heavy hydrocarbons: C1,—-C,o hydrocarbons collected
on Tenax absorbing substrates and analyzed by ther-
mal desorption and gas chromatography (Pellizzari
et al., 1984; Zielinska and Fujita, 1994a; Clausen and
Wolkoff, 1997). These are sometimes termed “semi-
volatile” compounds because the > C;5s compounds
are often found as both gases and particles. Most of the
total hydrocarbon mass is measured in the gas phase.

o Carbonyl compounds: Aldehydes and ketones, the most
common being formaldehyde, acetone, and acetylal-
dehyde (Altshuller, 1993). Carbonyls are operationally
defined as C;-C, oxygenated compounds measured
by collection on acidified 2,4-dinitrophenylhydrazine
(DNPH)-impregnated C,g cartridges and analyzed by
high-performance liquid chromatography with UV de-
tection (HPLC/UV) (Zielinska and Fujita, 1994b;
Kleindienst et al., 1998).

® Non-methane organic gases (NMOG): NMHC plus car-
bonyls.

o Semi-volatile organic compounds (SVOC): Particles and
gases collected on filters backed with solid absorbent
such as polyurethane foam (PUF) and XAD, extracted
in a variety of solvents, and analyzed by gas chromato-
graphy/mass spectrometry or HPLC/UV (Chuang et
al., 1987). This class includes compounds such as poly-
cyclic aromatic hydrocarbons (PAHs), methoxy-
phenols and lactones, pesticides, and other polar and
non-polar organic compounds. The heavy hydrocar-
bons are often classified as SVOCs, but they are given
a separate identity here for precision and clarity.

o Volatile organic compounds (VOCs): NMHC plus heavy
hydrocarbons plus carbonyls plus halocarbons, typi-
cally < C,4. VOC has been imprecisely used to de-
scribe most of the other categories described above.

Subsets of VOC compounds have been used to dis-
tinguish among sources in CMB analyses. Most of
these compounds are also precursors or end products
for chemical reactions that create ozone, suspended
particles, and deplete stratospheric ozone. These com-
pounds are most often quantified and reported by VOC
analyses, even though many other peaks are often found
in a chromatogram. These unidentified peaks are nor-
mally converted into a presumed mass and summed into
an “unidentified” fraction. The selection of “identified”
and “unidentified” peaks is not standardized, thereby
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limiting comparability of this fraction among different
laboratories.

Non-standard variable definitions and units are an
impediment to VOC source apportionment using the
CMB. VOC concentrations are usually reported in ppbC
or pgm~ 3 at local temperature and pressure. Either unit
is acceptable for CMB analysis, but the units used to
calculate source profile ratios must be consistent with
those of the ambient measurements.

3. Chemical mass balance receptor model

The CMB receptor model (Friedlander, 1973; Watson,
1984; Watson et al., 1984, 1990, 1998) consists of a least-
squares solution to a set of mass-balance equations that
express each receptor chemical concentration as a linear
sum of products of source profile abundances and source
contributions. The source profile abundances (i.e., the
mass fraction of a chemical or other property in the
emissions from each source type) and the receptor con-
centrations, with appropriate uncertainty estimates,
serve as CMB input data. CMB calculates values for the
contributions from each source type and the uncertain-
ties of those values.

3.1. CMB procedures

The CMB modeling procedure requires (1) identifica-
tion of the contributing sources types; (2) selection of
chemical species or other properties to be included in the
calculation; (3) estimation of the fraction of each of the
chemical species which is contained in each source type
(source profiles); (4) estimation of the uncertainty in both
ambient concentrations and source profiles; and (5) solu-
tion of the CMB equations.

The effective variance weighted solution to the CMB
model (Watson et al., 1984) is almost universally applied
because it (1) yields an approximately unbiased solution
to the CMB equations, providing model assumptions are
met; (2) uses all available chemical measurements, not
just “tracer” species; (3) estimates the uncertainty of the
source contributions based on precisions of both the
ambient concentrations and source profiles; and (4) gives
chemical species with higher precisions in both the source
and receptor measurements greater influence than
species with lower precisions.

3.2. CMB assumptions and testing

CMB model assumptions are (1) compositions of
source emissions are constant over the period of ambient
and source sampling; (2) chemical species do not react
with each other (i.e., they add linearly); (3) all sources with
a potential for significantly contributing to the receptor
have been identified and have had their emissions charac-

terized; (4) the number of sources or source categories is
less than or equal to the number of species; (5) the source
profiles are sufficiently different from one another; and (6)
measurement uncertainties are random, uncorrelated,
and normally distributed. The degree to which these
assumptions are met in applications depends to a large
extent on the particle and gas properties that are mea-
sured at source and receptor.

CMB model performance is examined generically, by
applying statistical tests such as collinearity and influ-
ence diagnostics (Kim and Henry, 1989; Henry, 1992) and
randomized testing methods (e.g., Monte Carlo simula-
tions with synthetic data sets, Javitz et al, 1988) to
determine the feasibility of using specific source profiles
to resolve source contributions by CMB, and specifically
for each application by following an applications and
validation protocol. When source profiles are similar, or
collinear, their CMB source contribution estimates have
large uncertainties. CMB can tolerate reasonable devi-
ations from the CMB model assumptions, though these
deviations contribute to errors in the estimated source
contributions that may exceed the calculated uncertain-
ties (deCesar and Cooper, 1982; Henry, 1992; Currie
et al.,, 1984; Dzubay et al., 1984; Lowenthal et al., 1992;
Javitz et al., 1988).

A CMB model application and validation protocol
(U.S. EPA, 1987; Watson et al., 1998) is followed to
apportion gaseous and particle organic compounds
(Fujita et al., 1994; Watson et al., 1994). This protocol (1)
determines model applicability; (2) selects a variety of
profiles to represent identified contributors; (3) evaluates
model outputs and performance measures; (4) identifies
and evaluates deviations from model assumptions; (5)
identifies and corrects input data deficiencies; (6) verifies
consistency and stability of source contribution esti-
mates; and (7) evaluates CMB results with respect to
other data analysis and source assessment methods.

3.3. CMB limitations

CMB complements rather than replaces other data
analysis and modeling methods. CMB helps explain ob-
servations that have already been taken, but it is not
predictive. When source contributions are proportional
to emissions, as they often are for VOCs, then a source-
specific proportional rollback (Chang and Weinstock,
1975) is used to estimate the effects of emissions reduc-
tions. Similarly, when a secondary compound appor-
tioned by CMB is known to be limited by a certain
precursor, a proportional rollback is used on the control-
ling precursor.

CMB does not explicitly treat profiles that change
between source and receptor. Atmospheric lifetimes for
many VOCs can be short, especially when photochemical
activity is intense (Atkinson, 1990; Carter and Lurmann,
1991). Emissions measurements in point-source stacks
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employ dilution to ambient temperatures and < 1 min
of residence time prior to collection to allow for conden-
sation and rapid transformation. Conversely, tunnel
studies allow for aging of vehicle emissions before samp-
ling. Profiles have been “aged” prior to submission to
CMB using aerosol and gas chemistry models to simulate
changes between source and receptor and to estimate
specific VOC source impacts on ozone concentrations
(Chunget al., 1996; Lin and Milford, 1994). These models
require additional assumptions regarding chemical
mechanisms, relative transformation and deposition
rates, mixing volumes, and transport times; these as-
sumptions must be stated and evaluated as part of
a CMB application.

4. VOC source compositions and profiles

Emissions inventories typically show stationary sour-
ces and on-road mobile sources contributing equally to
total ROG emissions in an area. Fujita et al. (1997a)
compared emissions inventories from the entire state of
Massachusetts with those from California’s South Coast
Air Basin (SoCAB) and found, respectively, for each area:
(1)45% (SoCAB) and 46% (Mass.) of ROG from station-
ary emitters such as fuel combustion, waste burning,
solvent use, petroleum processing storage and transfer,
industrial processing, and miscellaneous processes; (2) 46
and 34% from on-road vehicles, including spark ignition
and diesel; and (3) 9 and 21% from off-road vehicles,
including trains, ships, aircraft, and construction/agricul-
tural equipment. Solvent use, including industrial and
architectural coatings, is the largest component of sta-
tionary sources, constituting 29% (Los Angeles) and
38% (Mass.) of the total ROG inventory. Biogenic emis-
sions are not normally quantified as part of urban inven-
tories unless a special study is conducted.

The emissions inventory is the starting point for
a CMB source apportionment to identify potential con-
tributors to ambient concentrations. Vehicle-related
emissions, including exhaust, evaporated fuel, and even
liquid fuel are ubiquitous in all urban areas and are
always included. Architectural (i.e., paints) and industrial
solvents (i.e., cleaning and process solvents, as in
printing) are also common to, but highly variable
in, most urban areas. Petrochemical production and
oil refining are more specific to certain urban settings,
such as the Texas coast, where these activities are
numerous. Biogenic emissions are larger in the eastern
US, where forests are lush, in contrast to the arid west.
ROG emissions in inventories are often reported in
equivalent units of methane or propane. Comparisons of
relative CMB source attributions to emissions invento-
ries require appropriate reconciliation between the
inventory units and source contribution units (Kenski
et al., 1995).

Source profiles are needed from representatives of
these source types to apply the CMB and to translate
ROG inventories into speciated inventories for air qual-
ity models. Several compilations or “libraries” of VOC
source profiles have been assembled (Shareef et al., 1988;
Scheff et al., 1989; Doskey et al., 1992; Harley et al., 1992;
Fujita et al., 1997a) from original measurements and
a combination of published and unpublished test results.
Most of these profiles are limited for CMB use because
(1) they represent older technology and fuels that are
different today; (2) documentation is lacking or insuffi-
cient; (3) compound abundances are normalized to differ-
ent definitions of NMOG or NMHC and are derived
from a variety of measurement units; and (4) reported
VOC:s are not the same among profiles.

Fractional abundances have been determined by
dividing VOCs measured in source samples, reported in
ppbC or pg m~2 by (1) NMHC, as described above,
including the unidentified fraction; (2) the sum of the
quantified or most abundant compounds, which varies
depending on the investigator; (3) the sum of all canister
measurements, including non-reactive gases such as
halocarbons; and (4) NMOG, the sum of all VOCs mea-
sured from all applied methods. The profile differences
make it difficult in practice to compare and use profiles
from different studies. Furthermore, inventories employ
different conventions for defining VOC. Comparison of
CMB results with inventories requires a common refer-
ence. Since the TO-14 method is applied to PAMS (Lewis
et al., 1998) at all severe ozone non-attainment areas, it is
recommended that the sum of the 55 PAMS target hy-
drocarbons should be the common normalization stan-
dard for source profiles. Measurements from other
canister analyses, Tenax, and DNPH should also be
normalized to the sum of the PAMS species. With this
common convention, renormalization to NMOG or
other categories is straightforward. Table 1 identifies the
PAMS species and shows examples of source profiles
normalized to their sum.

The largest body of knowledge about organic gas
source compositions is related to mobile source emis-
sions (Black et al., 1980; Zweidinger et al., 1988; Williams
et al., 1990; Wallington et al., 1993; Haszpra and Szilagyi,
1994; Pierson et al., 1996; Sagebiel et al., 1996; Fujita et
al.,, 1997a, b; Gertler et al., 1996; Mugica et al., 1998; Siegl
et al.,, 1999). These tests include emissions from spark-
ignition (gasoline-fueled) vehicle exhaust, compression-
ignition (diesel-fueled) vehicle exhaust, liquid gasoline,
and evaporative gasoline emissions from fuel handling
and vehicle operation.

The examples in the first four columns of Table 1 dem-
onstrate the similarities and differences between vehicle
exhaust, liquid gasoline, and evaporated gasoline pro-
files. With only the light hydrocarbons measured, the
heavy-duty diesel and light-duty gasoline exhaust
profiles are similar, and are often collinear in CMB
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calculations. Ethene, acetylene, 1-butene, iso-butene, pro-
pane, propene, isopentane, n-pentane, 2,2-dimethylbutane,
2-methylpentane, n-hexane, benzene, 3-methyhexane, tol-
uene, ethylbenzene, m- and p-xylene, m-ethyltoluene, and
1,2,4-trimethylbenzene, are the most abundant com-
pounds in either or both of these emissions. Several of
these are short lived, and are only used in CMB calcu-
lations where fresh emissions are expected, as during
early morning. Major differences between these two ex-
haust profiles are evident for (1) acetylene, iso-butene,
isopentane, n-hexane, and 2-methylhexane that are most
abundant in gasoline exhaust; and (2) for propene, pro-
pane, 2,2-dimethylbutane, n-decane, and n-undecane that
are more abundant in diesel exhaust. Gertler et al. (1996)
show that the CMB discrimination between diesel and
gasoline exhaust is distinctive when the heavy hydrocar-
bons are included. Most of these compounds are highly
enriched in diesel exhaust but have negligible abund-
ances in normal-running gasoline vehicle exhaust.
Liquid gasoline contains many compounds in com-
mon with gasoline vehicle exhaust. It is depleted in com-
bustion products such as ethane, ethene, and acetylene.
Evaporated gasoline is also depleted in these combustion
compounds, as well as heavier hydrocarbons that volatil-
ize more slowly from liquid fuels. Isobutane, n-butane,
t-2 butene, and especially isopentane are enriched in
evaporated gasoline. MTBE (methyl-¢-butyl ether) stands
out as a large constituent of all gasoline-related emis-
sions that clearly separates these from diesel in areas
where it is used as an additive. These differences are
sufficient for CMB separation of gasoline exhaust from
liquid and evaporated gasoline, and often from diesel
exhaust, in ambient air. Gasoline compositions vary with
location and time of year. Liquid gasoline and headspace
evaporated gasoline samples should be analyzed at times
and places consistent with ambient VOC measurements.
Petrochemical production, especially the refining of
gasoline and other fuel oils (Sexton and Westberg, 1979,
1983), can be a large contributor in areas such as Hous-
ton, TX (Fujita et al., 1995a) as evidenced in Table 1 for
samples taken in and around a refinery. Ethane, propene,
propane, n-pentane, t-2 hexene, benzene, n-heptane, tol-
uene, and n-octane are abundant species. Most of these
overlap with liquid and evaporated gasoline vapors. Of
particular note is the large fraction of unidentified
NMHC that constitutes 28% of NMHC in the Table
1 example. This fraction includes real, but unreported,
chemical compounds that are not in the other profiles. If
properly quantified, these could probably assist the CMB
resolution of refinery and other petrochemical sources.
Although solvents from paints and industrial uses are
large components of all ROG inventories, their reported
profiles are few (Kitto et al., 1997; Guo et al., 1998, 1999).
Censullo et al. (1996) evaluated a large number of differ-
ent solvent uses in southern California, and two profiles
are listed in Table 1. These profiles are depleted in the

species common to fuel use and production, with larger
abundances of styrene, n-decane, and especially “other”
compounds. The “other” VOCs are quantified and differ
substantially among the different coatings tested. These
are sufficient to separate various coating and solvent
emissions from other contributors. California requires
special solvent and coating formulations to comply with
air quality emissions requirements, so these profiles are
likely to be very specific to a particular area.

Printing ink solvents from offset (Wadden et al., 1995)
and rotogravure are commonly identified in emissions
inventories. Most of these emissions are captured, con-
densed, and re-used by modern printing facilities, espe-
cially the toluene used for thinning rotogravure inks. The
final column of Table 1 shows enrichments for styrene,
n-nonane, and 1,2,4-trimethylbenzene, similar to the
other solvents. Specifying abundances of compounds in
the “other identified” category often allows the separ-
ation of different solvent contributions to ambient VOCs.

In addition to these common emissions sources, land-
fills are sometimes identified as large TOG emitters ow-
ing to their prodigious production of methane that may
be accompanied by ROG, depending on the nature of the
landfill wastes and disposal practices. Brosseau and Heitz
(1994) found acetone, alpha terpinene, benzene, butyl
alcohol, dichlorobenzene, dichloromethane, ethylben-
zene, ethyl mercaptan, limonene, furans, terpenes, tol-
uene, vinyl acetate, vinyl chloride, and xylene to be
among the most abundant components of landfill ROG.
Several of these compounds, such as vinyl chloride, are
not common to widespread area sources and might be
used to determine landfill source contributions by CMB.
Kalman (1986) identifies several VOCs outgassed by
plastics when they are heated. Acetone was consistently
the most abundant ROG found in emissions from the
surveyed landfills, probably resulting from the anaerobic
decay of discarded organic material. Similar reactions in
dumpsters and trash cans, as well as in the natural
environment, may account for a portion of the unex-
plained acetone observed by Fujita et al. (1994) in
Los Angeles and by Singh et al. (1994) at more remote
locations. Acetone is also a product of photochemistry.
Shonnard and Bell (1993) document substantial quantit-
ies of benzene emanating from contaminated soil, a
situation that will presumably improve as modern
amelioration methods are applied to these dumpsites
(Fox, 1996).

Garcia et al. (1992) found small quantities of VOC
emitted by several French coal-fired power stations, with
benzene, toluene, ethylbenzene, xylenes, tetrach-
loroethane, benzaldehyde, and phenol being the most
abundant compounds. Abundances of these compounds
were substantially enriched over their abundances in the
fuel, indicating that these compounds do not combust as
well as other fuel components or that they form as part of
the combustion process. Some data have also been
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reported for meat cooking (Schauer et al., 1999) petro-
leum fires (Booher and Janke, 1997), food and beverage
production (Passant et al., 1993), household products
and indoor building materials (Sack et al., 1992), ferry
boats (Cooper et al., 1996), hot asphalt application (Kitto
et al, 1997), fish rendering (Ohira et al., 1976), and
phytoplankton in the ocean (McKay et al., 1996).

Biogenic VOC emissions from trees and shrubs
(Altshuller, 1983; Roberts et al., 1985; Hewitt and Street,
1992; Tanner and Zielinska, 1994; Benjamin et al., 1997;
Street et al., 1997) are typically reported for isoprene
and monoterpenes such as alpha- and beta-pinene.
These compounds are very reactive and are usually de-
tected only in forested areas. Isidorov et al. (1985) found
a wide variety of heavy hydrocarbons in air dominated
by different types of plants and trees that might be more
stable indicators of biogenic contributions to ambient
VOCs.

Variations in biogenic emissions source profiles are
difficult to quantify due to the variability in vegetation
types, ambient temperature, seasonal growth cycles, and
degree of drought. Despite its high reactivity, isoprene is
commonly used as marker for biogenic emissions. Ter-
penes are not often quantified in ambient samples owing
to measurement difficulties. Although the effects of photo-
chemical reactions on the source contributions can be
minimized for other major hydrocarbon sources by using
CMB fitting species with lifetimes comparable to air mass
residence times, this is not possible for a single-species
biogenic profile based upon isoprene with input data
from conventional VOC measurement methods.

Biogenic contributions can be distinguished from fossil
fuel contributions to ambient VOC by the '*C isotope
which is much more abundant in recently living organ-
isms than in ancient coal, oil, and natural gas fuels
(Klouda et al., 1996). '#C is conserved with chemical
transformations, thereby enabling the participation of
biogenic emissions in photochemistry to be quantified by
analysis of VOC end products. Vegetative burning
(Edgerton et al., 1986; Isidorov et al., 1985; Hurst et al.,
1994) has also been identified by its contributions of
methyl chloride and retene in ambient air, but the com-
pounds in its NMHC and NMOG emissions are poorly
characterized.

The number of published profiles is large for vehicle
exhaust and biogenic emissions, but small for other
source types. The low number of tests on different ROG
emitters indicates a dearth of profile measurements for
many sources that may be important precursors for
ozone and PM,, s.

5. VOC source contributions

Prior to application of the CMB receptor model,
source contributions were inferred by comparing ratios

of individual VOC:s or classes of VOCs observed in the
ambient air with corresponding ratios in source samples.
Neligan (1962) compared C,-C- hydrocarbons in ambi-
ent air from central Los Angeles with the distribution of
these groupings in motor vehicle exhaust. Neligan (1962)
reported a greater proportion of the lower molecular
weight paraffinic hydrocarbons in ambient samples than
in exhaust emissions and attributed this discrepancy to
contributions from natural gas. Stephens and Burleson
(1967) obtained similar results when they examined VOC
measurements collected in Riverside, CA, but they dis-
covered that natural gas contributions alone could not
explain the propane/ethane ratios in ambient samples.
They suggested a combination of gasoline evaporative
losses, emissions from oil fields, and natural gas losses to
account for ambient concentrations. Kopczynski et al.
(1972) estimated that one-third of the hydrocarbon con-
centration (as C) measured in 1968 at Downtown
Los Angeles could be attributed to natural gas and gaso-
line vapors based on the ratio of total paraffins (less
methane) to carbon monoxide (CO) in motor vehicle
exhaust and the average CO concentration in the ambi-
ent samples.

Several recent CMB and other modeling applications
to VOC apportionment are summarized in Table 2. Most
of these studies estimated contributions of five to eight
source types and used about 25 CMB fitting species in
the calculation.

Vehicle exhaust is invariably the major contributor
(frequently more than 50%) to NMHC in urban/subur-
ban areas. The gasoline exhaust contribution is typically
four times the diesel exhaust contribution. Evaporated
gasoline and liquid gasoline are the next most abundant
contributors in most areas. Refinery, forest fire, and other
industrial source contributions are area specific.

Several of these studies compared proportional source
contribution estimates with proportional emissions in-
ventory estimates. For some study locations, these com-
parisons show that CMB vehicle emission proportions
differ substantially from those in the inventory. CMB
source contribution estimates for solvents and coatings
were sometimes similar to but were also sometimes near-
ly an order of magnitude lower than those indicated by
the inventories. The examples in Table 2 show how CMB
can identify potential discrepancies in emissions models
that need to be resolved prior to applying chemical
transport models.

Continuous VOC monitors have been developed
(e.g., Shreffler, 1993; Farmer et al., 1994), and these pro-
vide opportunities to apportion sources hourly to com-
pare with hourly emissions estimates (Fujita et al.,
1995a). VOC source apportionment should be more
common with large data sets being acquired from the
PAMS (Evans et al., 1992). These stations are located
throughout the US and many acquire hourly VOC
measurements (Oliver et al., 1996).
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6. CMB, emissions inventories, and air quality models

CMB plays three roles in air quality assessment. The
first is the direct apportionment of ambient concentra-
tions to their sources. This apportionment in and of itself
has been of great utility in developing control strategies
in PM;, non-attainment areas over the past decade.
CMB has been the primary analysis tool in areas with
intermittent and poorly quantified emissions rates for
fugitive dust and wood smoke, and with the highest
concentrations occurring under stagnant conditions
where air quality dispersion models are inapplicable.
As shown in Table 2, this direct apportionment has value
for formulating primary ROG reduction strategies for
ozone precursors, secondary organic aerosol precursors,
hazardous air pollutants, and long-lived gases that affect
climate.

Second, CMB independently verifies emissions inven-
tories, against which emissions reduction credits are
taken, so that expenditures on their improvement may be
better focused. Impediments to CMB/inventory recon-
ciliation include non-standardized and incompatible def-
initions of ROG, chemical compounds, reporting units,
and source categories. Methods to deal with these incon-
sistencies are complicated, but they are feasible and prac-
tical to specify and apply.

Finally, CMB offers a framework for evaluating the
outputs of complicated air quality models. The most
often used criteria of an air quality model is how well its
results compare with measured ozone or particle mass
concentrations. Good comparisons are often fortuitous,
resulting from adjustment of hundreds of different inputs,
parameters, and mathematical relationships within ac-
ceptable uncertainty bounds to optimize agreement be-
tween modeled and observed concentrations for a single
variable. Current models calculate concentrations for
dozens of primary, intermediate, and end-product
species, many of them VOC:s. In principle, these models
can produce a pattern of concentrations and uncertain-
ties similar to CMB source profiles that could be used by
the CMB for a multivariate fit to the ambient data. This
is a more complex, and potentially more accurate “profile
aging” process, as represented in a simpler context by Lin
and Milford (1994) and Harley et al. (1997). The same
performance measures of percent mass, r-square, chi-
square, and difference between calculated and measured
concentrations to evaluate a CMB source apportionment
(Watson et al., 1998) could, and should, be used to evalu-
ate model outputs and to diagnose modeling deficiencies.

7. Conclusions
The CMB receptor model has apportioned different

fractions of VOCs in several urban areas, mostly in the
United States. These applications differ in terms of the

total fraction apportioned, the calculation method, the
chemical compounds used in the calculation, the appor-
tionment units, and the source profiles applied. Never-
theless, they show similar results with respect to the VOC
fractions derived from different sources. Gasoline vehicle
exhaust, liquid gasoline, and gasoline evaporation con-
tribute up to 50% or more of the ambient VOCs in many
of these studies. Relative motor vehicle source contribu-
tions determined by CMB range from equivalent to up to
twice their proportions in emissions inventories. Coat-
ings and solvent contributions from CMB are much
lower than their proportions in emissions inventories.
Several measurement and reporting conventions would
facilitate CMB analyses of VOC data sets. These include
(1) normalizing measured species in source profiles to the
sum of 55 commonly measured PAMS hydrocarbons in
units of ppbC or ugm™3; (2) reporting results in elec-
tronic data files with common mnemonics in ppbC or
pgm ™3 units; and (3) identifying and reporting currently
unidentified peaks in chromatographic spectra.

The CMB is widely applicable to automated GC and
canister samples taken in PAMS networks. It can be
more effective with additional specialized measurements
that include heavy hydrocarbons by Tenax/GC-FID,
halocarbons by Canister/GC-ECD, aldehydes by
DNPH/HPLC, and a variety of organic compounds in
the gas and solid phase by PUF-XAD/GC-MS.
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